DUPORTHITE: A MIXTURE OF TALC AND CHLORITE

P. W. SCOTT AND M. R. POWER

Read at the Annual Conference of the Ussher Society, January 1995

P. W. Scott and M. R. Power, Camborne School of Mines, University of Exeter, Redruth, Cornwall TR15 3SE

Duporthite was first described by Collins (1877b) from an altered "picrite" intrusion exposed in the cliff at Duporth, near St. Austell, Cornwall [SX 036 513]. It occurs in "fibrous masses occupying fissures and shrinkage cracks ...The fibres are placed transversely across the vein, making generally an angle with the walls of about 70°... the mineral is greenish to brownish gray, has a silky lustre, H [hardness] about 2 and Sp. Gr. 2.78...The fibres are flexible like asbestos" (Collins, 1877b). Chemical analyses were presented which differed widely from other asbestiform minerals, and hence Collins named it a new mineral. It is referred to in Clark (1993) as requiring re-examination. Samples identical to those described by Collins have been obtained from the same locality and the mineral re-appraised.

The host intrusion is an extensively faulted and altered dolerite sill (Power and Scott, 1995). Veins of duporthite are common in the more altered parts of the sill and are up to 4 cm wide. Siderite veins with a dark brown surface oxidation are also common (these veins frequently contain duporthite). X-ray diffraction patterns of several samples of duporthite, made using a Siemens D5000 X-ray diffractometer, show it to be a mixture of talc and chlorite with proportions varying between samples. Samples examined using the SEM show that the intergrowth is very fine; the two phases are unresolvable using a 4 pm electron beam (Figure 1). Weathering tends to remove chlorite preferentially, hence the more weathered veins have a whiter colour.

Chemical analyses by X-ray fluorescence spectrometry of several samples are given in Table 1, the analysis of Collins is also given for comparison. The major differences are the increased amounts of MgO and lesser amounts of Al₂O₃ in the new analyses. This confirms the comments made by Ussher et al. (1909), in referring to analyses of the Duporth "serpentinite" made by Collins (1877a) and Phillips (1878), that magnesia may be precipitated with alumina in gravimetric analyses unless special precautions are taken. Differences in chemical composition are due to variable chlorite contents (Al₂O₃ is proportional to the chlorite content).

ACKNOWLEDGMENTS

We gratefully acknowledge C. M. Bristow for introducing the locality to us; L. Sear for the chemical analyses; and the owners of Duporth Holiday Village who cheerfully allowed access to the exposure on their private beach.

REFERENCES


